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EFFECT OF SHEAR ON THE PLASTIC B7,4P•NG OF BEAMS rVt,

by -by

Ao D. C,/Drcker

The end-loaded cantilever beam of perfectly p astic ta'.erial

has been studied in considerable detail but many questions remain unanswered.

__As a first step in extension to plates, the concept is explored of an inter-

action curve relating limiting values of shearing force and bending moment

for perfectly plastic beams, Simple illustrations demonstrate that, far more

than in the elastic range, such interaction is not just a local r.atter but

depends upon the geometry and loading of the entire beam. UsefuL interaction

curves are obtained, nevertheless, with the aid of the upper and lower bound

techniques of limit alysis, choosing the maximum shearing stress criterion

of yie-ding for convenience. / f# '-77.4, 2I

It is shown, in particular, that although a small amoaunt of shear

produces but a second order reduction in the limit moment of beams, a sm4•

moment reduces the limiting shear value by a first order tern.

AA f

•q i/- !I"

*The results presented in this paper i-ere obtained in the course 6oA earch
sponsored by the Office of Ordnance Research under Contract No, DA-19-ý02O-
ORD-3172, Project No. TB2-O001 (1086).

**Chairman, Division of Engineering, Brown University, Providence, R6 I,
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Introduction

All beams to be considered are assumed to be made of an idealized

material which is termed perfectly plastic. Perfectly plastic material is

elastic up to the yield point and then flows under constant stress. The

analysis of perfectly plastic beams in the plastic range is at present in

a ver-y satisfactory state., Bending usually predominates so that the concept

of simple plastic hinges is sufficient in most cases. Should there be

axial force in addition, the extending or contracting hinge described by

Onat and Prager (1) takes care of the situation. It might be expected

that shear force could be included in a similar manner. If shearing force,

V, and bending moment, M, alone are considered, it would seem a simple

matter to determine whether or not the beam is fully plastic at the section.

In those problems where shear is important, an interaction curve relating

V and M for fully plastic action would be most desirable for beams of

rectangular cross-section, for I-beams and for each shape in common use.

1Unfortunately such a curve does not really exist, even for any one shape,

because the geometry and loading of the entire beam. are important, not the

properties of the section alone.

The rectangular beam only will be considered in what follows and

g an attempt will be made to clarify the reasons for the lack of a unique

interaction curve. Studies of the cantilever beam under end load have been

made by Homne (2), by Onat and Shield (3), by Green (U), 'nd by Xeth (5).

Much of the information to be presented here is contained, therefore, in

this previous work but the relevant parts of each have not :et been compared

in principle and some of the peculiarities of the results have not previously

been explained.

Numbers in parentheses refer to the Bibliograply at the end of the paper.

Contract DA-19-320-ORD-3172/7
Project No. TB2-0001 (1086)
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s A start iill be made by the analysis of cantilever and simple

F! beams with constant shear force. The lower bound technique of limit

analysis (6) will be employed first to find a safe rhlation between V

and M and to provide reference values for the subsequent work, A local

criterion will then be sought to relate limit values of V and 14. The

impossibility of complete success with such an approach will be discussed.

The upper bound technique of limit analysis (6) will then be applied to

the simple span and comparison made with the lower bound and the local

criteria. The cantilever will also be studied and its peculiarities

It noted. The influence of the loading and the geometry away from the

section should then become clearer. Finally by comparison of all the

results, a useful but by no means unique or exact interaction curve will

be proposed.

Lower Bounds for Beam of Rectangular Cross-Section

The lower bound theorem of limit analysis deals with states of

stress which satisfy equilibrium and which do not violate the yield

condition. For convenience the maximum shearing stress criterion wil

be assumed so that the maximm shear stress may not exceed a0/2 where

G0 is the yield point in tension and in compression. Any such equilibrium

states of stress correspond to loads which are safe or at most at the

limit load.

Figs. 1 and 2 show problems which are almost but not quite

equivalent, a cantilever beam under end load and a simple beam under

central loading. The equations of equilibrium to be satisfied are, in

the usual notation,

ax 8Y

ax aY
Contract DA-19-020-ORD-3172/7
Project No. TB2-O001 (1086)



If in Equation 2] is taken as identically zero, r is seen to be

independent of x. Ther, from Equation 11] , ooserving that c is zero

at x-0

Sdy [3

The usual elastic solution with linearly varying ax and

parabolic '. Fig. 3a, satisfies equilibrium and will not violate yield

anywhere if the maximum bending stress does not exceed o and the shear

stress at the neutral axis is no more than a02. Calling the maximum

moment M = PL and the shear V = P, the lower bound result is

2M4< abh/6
-0

S~[4]
V< aobh/3S-0

To obtain an interaction plot, designate the known limit moment for moment

alone as M0 and the limit shear for shear alone as V0

2
M =Cobh2/A
0

"0 2- "

These values are obtained respoctively by a 0  in tension below the neutral

axis and a 0  in compression above and I*r a wniformly distributed shear

stress ac>2.

The elastic solution then gives the lower bound jjinr action plot

shown a5 a square on Fig. ;:

M<2 V 2

Although most of the pclnts arc. far too low (too close to the origin) the

Contract DA-I9-020-ORD-3172/7
Project No. TB2-001 (M086)



2/3,0 2/3 point alone could be quite useful. Two other points which are

known are 021 and 1,0. As a yield or interaction curve must be conLvex

(7) any line joining two lower bo'xld points must be a lower bound. Therefore

all points lying ins:.de the two inclined dashed straight linas of Fig. a give

permissible combinations of V and M.

The lower bound can be imDroved by taking a more el aborate

distribution of normal and shearing stress than in Fig. 3, to satisfy

the limiting maximum shear condition

i•2 ,2 2(]

Sx + x C

over the entire critical cross-section. Substituting the value of x

at x = L from Equation [3] gives the differential equation:

2 2
R + 2=02 [7)

The solution for positive y is

2'r1
:N • - = ~sin h (! _

-- = COS• l

090 L h

and is valid for < as illustrated in Figs* 3b,c. For larger values

of - the normal stress distribution separates into two 1/4 cycle
IL

loops, as shown in Fig. 3d, and the shearing stress is constant at a&O2

in the central region D.

I.ntegration of [8] leads to

Contract ILA-19-020-ORD-3172/7
Project No, T12-0001 (1086)
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• V L (1 -Cos V
L h

M 2(h)9h=2(1) (1 -cos)

Sfor h< (' r V_ < 2
L- 2

L-2 Vo -i"

For V 2
0

010
Mh D V

0 71

The composite result i3 plotted on Fig, 4 and should be a very good lower

bound indeed because equiliA'rium and yield are satisfied in a reasonable

manner. A modification of the linear distribution of bending stress and

parabolic distribution of shear along similar lines to Figs. 3c and 3d

would give a fairly good lower bound.

An implicit assumption has cec•i made, however, that the distribution

of shearing stress on the cross-section x = 0 can be whatever is called

F for by the lower bound solution. In a sense, therefore, the lower bounds

for Fig. 3a and for Figs. 3b, c, d, do not apply to exactly the same

R problem. There is no simple way of resolving this difficulty. St. Venant's

principle cannot be appealed to for short beams whether elastic or plastic

r and does not generally have as much meaning in the plastic range.

M A Local Criterion of Limit Loading

It is customary in the derivabion of the elastic moment-curvature

relation for beams in bending to amalyze a very short length of beam between

Contract DA-19-020-ORD-3172/7
Project No. TB2-000o (3086)



two neighboring cross-sections. Shear, if included at all, is added by

supposing constancy along the length of the beam. Free end or support

conditions are satisfied in the same nominal manner as in Fig. 3. In

e 'Vec , therefore, the assumption is made for general loading that each

elemirent of the beam behaves independently and exerts no restraint upon

its neighbor.

The same assumption of independent action in the plastic range

has much less justification as will be seen. It will, however, lead to

interesting interaction relations between shear and moment. Suppose, two

neighboring cross-sections are rotated and transversely displaced with

respect to each other as in Fig. 5 or in some more complicated pattern as

in Fig. 8. Transverse strain increments F , •z accompanying bhe

longitudinal strain increment e are assumed imimpeded. Quite a bit of

infonration can then be deduced about the state of stress and of strain

increment at each point in the plastically deforming body.

It has been established within the framework of small displacement

theory that, at the limit load, the stresses are constant and the deforma-

tion is purely plastic (6). Consider a small element of the beam which

is stretched plastically with strain increment • and sheared plastically~x

with increment y Fig. 6a. As in the previous section, the normal stress

a will be taken as zero or negligible. The Mohr's circle for stress is

as shown in Fig. 6b. Assumption of the maximum shearing stress criterion

of yielding then requires that all shearing be in the >qr plane, &z = 0.

As a consequence of the incompressibility in the plastic range of a material

obeying the maximun shear rule the plastic and, therefore, total strain

increments mus t satisfy

s +s 0 or F (1U]x y y x

Contract DA-19-020-ORD-3172/7
Project No. TB2-0001 (1086)
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The Mohr's circle for strain ir rement is thus centered at

the origin, Fig. 6c. As the principal directions of stress and of strain

increment coincide,

tan 2E = L [12]

Substitution in the yield criterion [6] gives

• a 0

F 2 0

xy 2 x

at any point in the plastically deforming section.

The assumed deformation of Fig. 5 in analytical form is Y V= ¥'

a constant over the depth of the beam, and & = r =ic where • is
h

the maximum strain increment at the extreme fiber y= h/2 or = 1.

Integrating expressions [13] to obtain moment and shear leads to

2+1 12"2
or -P No. )O (1

MO 2&

1 d- /2v - -- 2e [14 -
V V=V or VO- T- sinh

Fig. 7 gives the interaction curve of N/M6 vs. V/V 0

The question which arises immediately is whether the curve

represents actual limiting values,, upper bounds or lower bounds. If the

Contract DA-19-.020-ORD-3172/7
Project No. TB2-0001 (1086)
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length Ax of the beam were indeed free at its end cross-sections to

carry V and M as it liked, the result would be an upper bound. A

deformation pattern was assumed and the answer is the same as would be

found by following the upper bound procedure of equating the work done

by M and V to the energy dissipation (6)(8). Stress or equilibrium

conditions are not satisfied because r is not zero at y =h/2,
xy

except for Y 0.

A plastic deformation pattern of a quite different type can be

taken as in Fig. 8 in which the outor regions of the beam stretch or contract

without shearing and the inner portion D shears and changes length. An

interaction curve can then be obtained for each value of D/h, Fig. 7. The

7• lowest values will be found as y/e becomes indefinitely large. At this

stage the inner region D is effectively under plastic shear alone and

the shear stress will be CYd2.

00
V T bD

2 2
1 0bli a bD

or
2

110

which is appreciably below the local criterion corresponding to Fig. 5 (see

M Fig. 7)4

Stresses corresponding to this deformation pattern are admissible,

the surfaces y = +h/2 are free of stress. Does this mean that one of

the individual interaction curves or their lower limiit is the true interac-

tion curve? The answer must be no because [15] is in fact below the

lower bounds, Figs. 3,4. The confusion arises because of the attempt to

Contract DA-19-020-ORD-3172/7
Project No. TB2-0001 (1086)
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find a local criterion. Neither the deformation pattern of Fig. * nor

of Fig. 8 will ordinarily be permissible because of the remaining portions

of the beam. Transverse strains required by Fig. 5 will be restrained by

neighboring elastic (or rigid) reginns as will even more the peculiar

distortions of Fig. 8. If the upper bound procedure of li.it analysis

is followed, it iz necessary to include the energy dissipated by the mis-

matching of the length Ax and the undeforming remainder of the beam,

Fig. 9, Such dissipation terms are finite and independent of AX . They

predominate, therefore, as AX approaches zero.

In the elastic regime, such mismatch or its equivalent is of

second order with V constant. The curvature varies linearly alo.ng the

beam and there is a gradual transition from the section of maximum mno t

to the section of zero moment. For elastic theory to have any validity,

the length of tha beam must ble several times the depth so that shear strains

•¥xy resulting from the variation of 6 y are rLot significant. At the

limit load, on the nther hand, the deformation is entirely plastic and

is strongly localized. The transition between defo_-ming and undeforming

material is abrupt. When bending predominates, a small length only is

plastic. If in Fig. 9a the curvature of the plastic region is assumed

instead to vary smoothly along Ax from zero to a maximum and back to

zero there will be no mis-match at the ends of the deforming portion.

For Ax small compared with h, however, the Y which is secondary

in the elastic beam becomes primary and has large energy dissipation

associated with it. The mis-match trouble for pure bending is avoided

by the plastic hinge, Fig. 10, which spreads out over a distance equal

to the depth of the beam so that the criterion is in reality no longer

local*

Contract DA-19-020-ORD-3172/7
Project No. TB2-0001 (1086)



In general, for both elastic and plastic members it is clear

that a local oriterior. carnot app2y in regions of rapidly changing cross-

section. Roots of notches, abrupt changes in depth, and fixed ends all

require more elaborate theory for accurate analysis. The influence of the

complete geometry and load distribution on the limit load appears in more

detail in the further analysis of cantilever and simple beams which

follows.

Cantilever and Simple Rectangular Beams -Uper Bounds

If a relation had been established between V/VO and 14/,

the cantilever problem of Fig, 1 wovid be solved, The limit load P would

be determined by the value of shear P and moment PL.

V P PL
00 "0 bh

•-bh aO-K

therefore

V h M [16]
Vo 2L 14o

and the ratio h/2L would give the proper point on the interaction curve.

Conversely, a solution of the cantilever under end load vall help to

clarify the interaction relation.

Several solutions are available (2)-(5) including a fairly

comprehensive treatment of upper bounds by A. P. Green (4). When the

beam is very long, an ordinary plastic hinge may be assumed. Some of

the confusion in the detailed analysis of results is appcrent from Fig.

lla. Although the hinge is of the standard type, its center is h/2

from the fixed ends The support is assumed capable of applying stresses

which keep-an elastic triangular core adjacent to the fixed end and so

Contract DA-19-020-OPD-3172/?
Project No. TB2-0001 (1086)
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strengthen the beam. When the beam is very short, Green (4) and Onat and

Shield (3) propose the circular arc of sliding as in Fig. llb. The kinematic

picture proposed by Leth (5) for an I-beam is appropriate for the short

rectangular beam, Fig. Ulc. Again, as evidenced by the different points

of view expressed in (3) (4) and (5) the length of the beam becomes question-

able because of the restraint by the fixed end.

A discussion of the simple beam centrally loaded, Fig. 2, does

not resolve the inherent and important problem associated with a fixed end

or any abrupt change in section. It does, however, simplify the analysis

of the interaction problem. In particular, if the central hinge kinematic

picture is as,•umed, Fig. 12a, equating work done by the forces P to the

energy dissipated in plastic deformation gives the upper bound result (6)

PL < "0 or 1 [173

R This answer cannot be said to be unexpected but it is not obtained for the

Scantilever, Fig. lla.

Assuming a circular slip surface for verj short beams, Fig. 12b,

equating the work done by the external load to the internal dissipation

gives as an upper bound:

0 h _ h
J& PA -b 2. [18]2 2 sin 2 sin*

L +- ctn

The angle 4 should be chosen to minimize P because the least upper

bound is desired. The result of Onat and Shield (3) is then found (V=P):

V 2* ctn '- I [193

For vcry short beams and consequently small M/M0, series expansion

Contract DA-19-020-ORD-3172/7
Project No. TB2-0001 (1086)
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leads to the upper bound on the interaction relation (M PL) plotted on

Fig* 7.

V 3 (M~ 2[20]
01

The discontinuous shear upper bound picture, Fig. 12c, gives

SCO + b(h -D)2 A, PA -2 bDL + aob 4 L

2 L 4 L

or

PL _4 LA R + / \ 2 [211
a bh 1 h h

Minimizing the upper bound by taking the derivative with respect to D/h

and equating to zero

D = L or D + L - h [22]

Substitution of [22] and [16] in [21] results in the upper bound

__ interaction relation

valid for L/h < 1 or 1M/140 2(V/V0 ) or V/V0 _ 1/2. Note that in
Equation [23] first order changes in V/V0 at V/V = 1 correspond

fcrr0 v/v0

to first order changes in 1/0%. As shown in Fig. 7, the upper bound

[23] is a much better answer than [20] for small M/M0.

Extension of the simple beam to the left and to the right of the

Slines of action of the forces P as in Fig. 13 provides an excellent

illustration of the non-local character of the interaction relation

calculation. There will be no change in the upper bound computed from a

hinge picture like Fig. 12a or a circular arc of sliding as Fig. 12b.

However, comparing Fig. 12c and Fig. 13, it can easily be seen that

Contract DA-19-020-ORD-3172/7
Project No. TB2-0001 (1086)
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Equation [21] does not contain a complete expression for the dissipated

energy for Fig. 13. The (1 - D/h)2 term must be doubled because bending

occurs at the loads P as well as at the center of the beam. Here again is

the mis-match trouble discussed earlier, Fig. 9b, and tVie reason Fig. 8 leads

to a result below the lower bounds of Fig. 3.

Returning then to a modified Equation [211 and minimizing the

energy dissipated,

D + h [24]
2

L M V

andfor - <1 or "I0< 4 0
2h - M 0  V 0

M - [251
M0 (l0 V

is an upper bound on the interaction relation., Fig. 7.

Comparisons and Comments

Fig. 14 compares several of the results obtained. It should be

kept in mind that if a unique interaction curve existed it would be convex

(7). Although the local criterion is not necessarily either an upper or

a lower bcund and the lower bound corresponds to shear stress distributions

somewhat different from those of the upper bounds, it seems reasonable to

take

° -- 0.98 1-(V- ) [26]

or an expression close to [26) as a working "aypothesis. Such an approxi-

mation which nearly coincides with a lower bound and is not tou far from

possible upper bounds would seem satisfactory for practical and theoretical

Contract DA-19-020-ORD-3172/7
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use. Polygonal or other approximations to the curve may well be more

useful in particular problems (8)(9).

As V/V0 will rarely exceed 1/2, in most practical problems

the effect of shear may be ignored completely. As the purpose of this

paper is to elucidate the nature of the shear-moment interaction and not

to solve problems, none will be solved. One of the main points is that the

interaction is not a local affair but depends upon the loading and geometry

of the entire beam. Nevertheless when all possible loadings are considered

so that appreciable lengths of beam are at or close to yield. the local

criterion of Fig. 5 may be close to a useful limit loading for large

moment* Complete end fixity as in the cantilever of Fig. 11 or reinforce-

ment of the central region of the simple beam will, of course, raise the

R limit loads still further above those discussed here in detail. All things

Y considered, it does appear that the concept of an interaction curve has

enough value tc warrant the selection of an approximation such as Equation

[26] or for simplicity

M _ 11 (27]

M0

Contract DA-19-020-ORD-3172/7
Project No. TB2-0001 (1086)
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F IG. 6 STATE OF STRESS AND STRAIN INCREMENT AT EACH

PLASTIC POINT IN A BENT AND SHEARED BEAM WITH 0,y = 0

(Maximum shearing stress criterion of yielding assumed)



r7l_-DA3372/7

0.8 - see FIG.12c

0.4

0.0.--

0.4- -h - - - -

0.40.

-~.0 0.2 0./ 0MO0.

FIG.?7 INTERACTION CURVES



DA-3172/7
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